<u>Relations on sets: in principle</u>

- 1. If A is a set, what do we mean by a [binary] *relation* on the set A?
 - (a) Conceptually, what *logical* concept we've already encountered is the same thing as a relation?
 - (b) Give some examples of relations...
 - (i) on the set \mathbb{Z}
 - (ii) on the set of vertices in a graph G
 - (iii) on the set of subgraphs of a graph G
- 2. Properties of relations:
 - (a) What does it mean for a relation to be *reflexive*?Give examples of reflexive and non-reflexive relations from those you listed above.
 - (b) What does it mean for a relation to be *symmetric*? Give examples of symmetric and non-symmetric relations.
 - (c) What does it mean for a relation to be *transitive*?Give examples of transitive and non-transitive relations.
- 3. Equivalence relations:
 - (a) What is an *equivalence relation* on a set A?
 - (b) How does an A give us an *equivalence class* (often written $[a], \overline{a}, \text{ or } \mathbf{a}$) for each element $a \in A$?
 - (c) What properties make these equivalence classes a *partition* of the set A? How do we typically denote the collection of all equivalence classes of A under some relation ~?
 - (d) How does any relation R "generate" an equivalence relation, both intuitively and formally?

Integer relations: divisibility, congruence, and modular arithmetic

- 4. Define a relation on \mathbb{Z} via: $a \mid b$ (read "a divides b") just when $\exists k \in \mathbb{Z}$ such that b = ka.
 - (a) Prove that $4 \mid 12, 6 \mid 12$, and $12 \mid 12$, but $24 \nmid 12$ and $5 \nmid 12$.
 - (b) Which of the above properties does this relation possess?
- 5. Fix a positive integer n.

We say that $a, b \in \mathbb{Z}$ are "congruent modulo n", written $a \equiv b \pmod{n}$, just when $n \mid (b-a)$.

- (a) Prove that $6 \equiv 1 \pmod{5}$ but that $4 \not\equiv 1 \pmod{5}$.
- (b) Prove that congruence modulo n is an equivalence relation on Z. What are its equivalence classes, for n = 1, n = 2, and n = 5? In general, what are this relation's equivalence classes?
- 6. Again fix a positive integer n. Prove that addition, subtraction, and multiplication respect equivalence classes modulo n (i.e., equivalent operands give equivalent results) as below, giving us **modular arithmetic**). Specifically, supposing that $a, a', b, b' \in \mathbb{Z}$ satisfy $a \equiv a'$ and $b \equiv b' \pmod{n}$, prove that:
 - (a) $a + b \equiv a' + b' \pmod{n}$;
 - (b) $a b \equiv a' b' \pmod{n}$; and
 - (c) $a \cdot b \equiv a' \cdot b' \pmod{n};$

These properties allow us to think of performing arithmetic operations on the set of *equivalence classes* $\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\} \mod n$ —e.g., mod 6, we have $\overline{2} \cdot \overline{3} = \overline{6} = \overline{0}$.

Some relations on graphs

- 7. Suppose that G is a simple [undirected] graph. Consider the relations given below on the vertices of G.
 - (a) $v_0 A v_1$ if there is an edge joining the vertices v_0 and v_1 . (What word might the "A" stand for?)
 - (b) $v_0 C v_1$ if there is a path joining the vertices v_0 and v_1 . (What word might the "C" stand for?)

Which of these two relations is an equivalence relation? What are its equivalence classes? How does the other relation relate to it?

- 8. Suppose that G is a digraph, and define a relation on the vertices of G by $v_0 SC v_1$ just when there are *directed* paths both from v_0 to v_1 and from v_1 to v_0 (such vertices are called **strongly connected**).
 - (a) Show that SC is an equivalence relation on the vertices of G (the figure below gives you a digraph to think about).
 - (b) Circle the equivalence classes for SC for the digraph below.
 - (c) If we make a new graph \overline{G} with a vertex for each *equivalence class* of SC and add all edges of G that connect vertices from different equivalence classes, explain why this new directed graph must be a DAG (directed acyclic graph).

[Hint: what would a cycle on this new graph mean for G and the equivalence classes?]

